NATIONAL ORGANIC SYMPOSIUM T

@ School of Chemistry, University of Hyderabad

Chemistry for the sustainability

XVII-INOST-2022
Organized by

of people and planet:

Why chemists need systems thinking

as
G

I 0ocCD

\
Chemists for Sustainability

International Organization for
Chemical Sciences in Development

/

Stephen A. Matlin
s.matlin@imperial.ac.uk

-

N

Imperial College
London
Institute of Global Health Innovation

~

J




.:.": &;uT;u 5 % Yok 7:- t"ﬂ‘m \W_‘,’ ot
e S R,
Ambix, cucurbit and retort of Zosimos

From: Marcelin Berthelot,
Collection des anciens alchimistes grecs
(Paris, 1887-1888)

Rasasastra instruments used by South Asian
alchemists

National Science Center, Delhi
http://www.ayuryoqg.org/tags/rasa%C5%9B%C4%81stra

Philosopher's Stone

for metals
A

Alchemy

\4

Elixir of Life
for humans

Attempt to distil a substance to transmute lead into

gold (discovery of white phosphorus)
Joseph Wright of Derby, 1771

Black Powder: S, C, KNO,

probably invented by Chinese alchemists
searching for Elixir of Life


http://www.ayuryog.org/tags/rasa%C5%9B%C4%81stra

The chemical sciences have been good for development (wealth and health)
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www.j-bradford-delong.net/movable_type/images2/Life_Expect_Long.gif




World: Life expectancy at birth, both sexes, 2016

Data not available

E Not applicable

https://gamapserver.who.int/gho/interactive_charts/mbd/life_expectancy/atlas.html
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Oncoming global challenges
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/ State of the body

Diseases

diagnosis, prevention, treatment

Old, new, re-emerging
Epidemics & pandemics

Ageing

Mental health
Personalised medicine
etc

YVVVVYVYVYVYY

Non-communicable diseases

~

/

State of the world

~

Global environment « Economic/political/social factors

» Pollution: land, sea, air
> Biodiversity loss

» Climate change

» Freshwater shortage
» Food shortage

> etc

Globalization

Inequalities
Population
Urbanization
etc

VVVVYVY

Conflict, violence

Sustainability

Frameworks to address global challenges
1. UN Sustainable Development Goals
2. Planetary Boundaries

3. Human Security



@S The chemical sciences have been central to global progress and will be essential to meeting

oncoming global challenges — especially sustainable development
Chemists for

Sustainability S.A. Matlin, G. Mehta, H. Hopf, A. Krief, Nature Chemistry 2015, 7, 941-3
The role of chemistry in inventing a sustainable future.

2015 UN Sustainable Development Goals for 2030: 17 SDGs - “leaving no-one behind”

NO GOODHEALTH QUALITY GENDER
@ POVERTY AND WELLBEING EDUCATION EQUALITY

SUSTAINABLE
DEVELOPMENT

G{ALS

GLEAN WATER
AND SANITATION

DECENT WORK AND INDUSTRY, INNOVATION 1 REDUCED i"nﬁlsmﬁ%s‘
INEQUALITIES

ECONOMIC GROWTH AND INFRASTRUCTURE

RESPONSIBLE CLIMATE LIFE LIFE PEACE, JUSTICE PARTNERSHIPS
1 CONSUMPTION 13 ACTION 14 BELOW WATER 15 ONLAND 16 AND STRONG 17 FOR THE GOALS
AND PRODUCTION INSTITUTIONS

www.un.org/sustainabledevelopment/sustainable-development-goals/



@S The chemical sciences have been central to global progress and will be essential to meeting

| oncoming global challenges —but change is needed

Som S.A. Matlin, G. Mehta, H. Hopf, A. Krief, Nature Chemistry 2016, 8, 393-6
‘One-world’ chemistry and systems thinking.

‘One-world’ chemistry Recognises:

« Human and animal health and the environment
are intimately inter-connected systems

Aims to be:
« A science for the benefit of society

Requires
« Systems thinking
« Cross-disciplinary approaches

Systems thinking is one of
the essential competencies
for achieving sustainability?

LA. Wiek, L. Withycombe, C.L. Redman. Sustainability Sci. 2011, 6, 203—-218, https://doi.org/10.1007/s11625-011-0132-6



https://doi.org/10.1007/s11625-011-0132-6

System

A set of components
working together to
form a complex whole
that produces a
function?
« Systems have
boundaries
(open or closed)
« Systems have
properties

v

Change over time

v

Function

v

Emergence

System/function can be:

Object — e.g.aclocktotell the time
— e.g.an organism that lives
Process - e.g. a company’s management system

e.g. a national regulatory system to ensure compliance
with standards of quality in food or pharmaceuticals

Emergence:

An overall function or effect that cannot be deduced or produced from the
Isolated parts separately.

 Time-telling is not a property of individual cogs & springs in a clock

« Lifeis not a property of individual molecules in a cell

Sustainability:

Sustainability is a property of the whole system

— it is not simply a property of individual elements of the system?

1 D. H. Meadows,. Thinking in Systems: A Primer. Earthscan, London 2009. https://wtf.tw/ref/meadows.pdf



https://wtf.tw/ref/meadows.pdf
https://doi.org/10.1016/j.destud.2016.09.002

“The away myth”

There is no such thing as ‘away’. When we
throw anything away it must go somewhere.
A. Leonard, A. Conrad. The Story of Stuff, 2010
https://epdf.pub/the-story-of-stuff.html
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Production and consumption in the context of Earth and societal systems

4 Physical/environmental and biological/ecological systems of the planet N

[ A Biological systems and thfir ecological interactions \ ]
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The chemical sciences have been central to global progress and will be essential
to meeting oncoming global challenges — but change is needed

Planetary boundaries
« Anthropocene Epoch: Human actions since the Industrial Revolution have become the main driver of global
environmental change
« 9 critical areas where there is a risk of "irreversible and abrupt environmental change® if certain thresholds/tipping
points are passed I
* Planetary boundaries define a "safe operating space for humanity"
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. Safe operating space Control variable

Zone of uncertainty: Increasing risk of impacts

N,
Johan Rockstrom, Will Steffen, et al. Nature 2009, 461, 472-475, https://doi.org/10.1038/461472a;
Science 2015, 347(6223), 1259855, https://doi.org/10.1126/science.1259855

. Dangerous level: High risk of serious impacts



https://doi.org/10.1038/461472a
https://doi.org/10.1126/science.1259855

The chemical sciences have been central to global progress and will be essential
to meeting oncoming global challenges — but change is needed
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https://doi.org/10.1126/science.1259855

Planetary Boundaries Framework: ——— —————

Climate change ‘\ Ellwl;nnfég
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Planetary Boundaries Framework: = = = - -
‘- Climate /
change

Climate change

Planetary boundary Threshold
A f

Variable low boundpry Ir:1 zone of zone of | Planetary Value of
Indicator afe) uncertainty inty boundary indicator
measured ! (r“i”sgk*)‘ ppm ppm

|

|

: 2009 387.6
Climate change |
Atmospheric : 2015 401.0

- I 350

CO, conc I - 2020 412.51

|

!

1 https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide



https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide

Mid-Pliocene Warm Period

CO, atmospheric concentrations over 800,00 years
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- sea level 15-25 meters %
higher than today. 2020 average
N (412.5 ppm) @
S 400
N
N\
N\
N\
AN 350
\\ E
S a highest previous
N o concentration (300 ppm)
AN o 300 B
AN g f ‘
N -g ,  warmperiod & \ A ' h v
S € 250 (N (interglacial) /\ (M| . | \ | ¥ ur
8 \ 5 w.r | ' | ,
K<y | N IR VA l I (Y Al
S I\l 1’ 4, | \ ' ! ' v v
o N | \ \ \ | W . Al | { |l
Zbﬁ J \| | b ] \ "l'q".'l W\
ice age
150 (glacial)
” 100
3,000,000 800,000 600,000 400,000 200,000 0
years before present i

Amount of carbon dioxide (parts per million)

CO, atmospheric concentrations
1960-1921

420

400

380

360

340

320

300

280

1960 1970 1980 1990 2000 2010 2020

Years
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https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide

Concept map!? Biogeochemical flow CO,

Concept labels

-objects
-ideas
- effects Chemistry of Atmospheric
carbon cycle / — > \_ aerosol loading
Connections Incomplete
hydrocarbon

-arrows with labels indicate
flow of consequences

combustion
increase in
atmospheric CO ”
‘ 2
concentration / Freshwater use

Dissolved CO,

Systems-Oriented Concept Map
Extension — SOCME?

Sub-systems
- Groups processes that
Changein

form part of a set
| josphere integrit
Connections p

-Displays effects and B . CYstem chandeg

consequences both within
and between sub-systems

1J.D. Novak, A.J. Cafas. The Theory Underlying Concept Maps and How to Construct and Use Them, 2008. http://cmap.ihmc.us/docs/theory-of-concept-maps



http://cmap.ihmc.us/docs/theory-of-concept-maps
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OCEAN INTERACTION
SUBSYSTEM reacts via consumption
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OCEAN INTERACTION
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reacts via consumption
& metabolism
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water Ww
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via
Alternative
energy

melting
o reduce
e
strategies Carbon capture
for & storage
Coenuestation) « A

CLIMATE CHANGE INDUSTRIAL USE OF €O, HUMSAUI\I|35|\<|(|S-I'-I!§|CITION
SUBSYSTEM SUBSYSTEM

agricultur@d/f burning

crete production

<

Concentration
increase to over 400

ppm

Anthropogenic
globalwarming

is input to

: . may
is core science

strategies directly

‘Green’
concrete

Rbehind
explain included Physics
in & chemistry of
molecules &
radiation

Sustainable
energy supply

Climate
modelling
studies




Exploring chemistry options
LAND INTERACTION SUBSYSTEM

B : +i
Alternative SUSTAINABLE energy sources

Not consuming fossil fuels or emitting greenhouse gasses

dd * Nuclear: fission, fusion

* Hydroelectric

* Wind, wave, geothermal

Solar

OCEAN INTERACTION
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Deforestation by
burning

~~coqcrete production
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Exploring chemistry options

OCEAN INTERACTION

LAND INTERACTION SUBSYSTEM

o Li recycling

Alternative SUSTAINABLE energy sources
Not consuming fossil fuels or emitting greenhouse gasses
Nuclear: fission, fusion

* Hydroelectric

e Solar

* Wind, wave, geothermal

Portable energy: batteries, fuel cells, green fuels

contributes\

/Sustainable batteries

' Uptake by
shallow oce
e Li-ion

o global Li resources rapidly declining

o Li recycling

* Other metals: e.g. Al, Mg, Na, Zn

O mining operations create a large carbon footprint

o Electrochemical Li extraction from seawater: estimated
~200 billion Mt in oceans — but very dilute (180 ppb).

ds to CO,

n
ir400

‘ .
may Alternative ‘Green’
[\ directly energy concrete
reduce

O

ANTHROPOGENIC CO,
GENERATION SUBSYSTEM

Deforestation by
burning

~~coqcrete production

Heating calcium
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Burning fossil
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reduce
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/
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CLIMATE CHANGE
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Sequestration

INDUSTRIAL USE OF
SUBSYSTEM

s /Carbon capture
/ & storage

Sustainable
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Exploring chemistry options
LAND INTERACTION SUBSYSTEM o Li recycling

— : g o Li extraction from seawater:
Alternative SUSTAINABLE energy sources o)

Not consuming fossil fuels or emitting greenhouse gasses

dd * Nuclear: fission, fusion

* Hydroelectric

* Wind, wave, geothermal

* Solar

Portable energy: batteries, fuel c

' Uptake by
. shallow ocean
contributes

OCEAN INTERACTION

ANTHROPOGENIC CO,
GENERATION SUBSYSTEM

Deforestation by
burning

Heating calcium
carbonate

reduce
via

Fuel cells
* Hydrogen
o H, + O, > H,0 in electrochemical cell
o but H, must be made, transported, stored

OR may ‘Green’
H, generated in situ within the fuel cell system by reforming fectly concrete
H-rich fuels, e.g. CH;0H, EtOH, hydrocarbon fuels. duce

Sustainable
energy supply

* Direct methanol fuel cells
o CH;0H + H,0 - CO, + 6H* + 6e~ in electrochemical cell

rbon capture
& storage

o but CH;0H must be made, transported, stored L S
sroaTes i 5 HUMAN MITIGATION
CLIMATE CHANGE 2 SUBSYSTEM

SUBSYSTEM SUBSYSTEM



Exploring chemistry options

OCEAN INTERACTION
=

LAND INTERACTION SUBSYSTEM

o Li recycling

Alternative SUSTAINABLE energy sources

Nuclear: fission, fusion
Hydroelectric

Wind, wave, geothermal
Solar

/‘Green’ fuels for combustion
* Hydrogen

o H, + O, & H,0 in internal combustion engine
o but H, must be made, transported, stored
o current synthesis of H, is by cracking CH,
CH, + 2H,0 - CO, + 4H,
needs ‘green’ method for production of H,
e.g. electrochemical or photochemical 2H,0 - 2H, + O,
* Ammonia
04NH; + 30, - 2N, + 6H,0 in internal combustion engine
o but NH; must be made, transported, stored

Ko current synthesis of NH; generates a lot of CO, — needs ‘greeni

Not consuming fossil fuels or emitting greenhouse gasses

Portable energy: batteries, fuel cells, ‘green’ fuels
~~coqcrete production

may
rectly

duce
o

arbon capture
& storage

O

ANTHROPOGENIC CO,
GENERATION SUBSYSTEM

Deforestation by
burning

Heating calcium
carbonate

ion

fuels
reduce
via
Alternative
energy

‘Green’
concrete

Sustainable
energy supply

LS

HUMAN MITIGATION
SUBSYSTEM

o Li extraction from seawater:



Exploring chemistry options

Sustainable construction \
» Concrete is world’s most widely used material for construction:
aggregate of sand, gravel, stone bonded together with cement
o Cement making: CaCO; + heat — CaO + CO,

Produces 8% of annual global CO, emissions )
‘Low-carbon’ cements needed — slow progress ANTHROPOGENIC CO,
« Alternatives to concrete ENERATION SUBSYSTEM

o using waste or residual materials from different industries

Deforestation by
burning

with \ { ] gas exchange

water Ww
Uptake by o Heating calcium
GarUES shallow ocean slowly adds to CO, carbonate
to in atmosphere energy production
CORE

Burning fossil

reduce
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Human Security Framework

HDR1994 replaced traditional interpretation of security as state-centred:

HUMAN

DEVELOPMENT » instead, centred on the individual
» Human security concept defined as

“freedom from want and fear and freedom to live in dignity”

HDR1994 identified seven main dimensions of the human security concept:

= health security

Human Development Report 1994 = food security
New Dimensions of Human Security _ _
United Nations Development = environmental security

Programme, New York, 1994 : :
= economic security

= personal security
= community security

= political security

http://www.hdr.undp.org/en/content/human-development-report-1994
https://daccess-ods.un.org/access.nsf/Get?Open&DS=A/64/701&Lang=E
https://www.securitycouncilreport.org/atf/cf/%7B65BFCF9B-6D27-4E9C-8CD3-CF6 E4FF96FF9%7D/CPR%20A%2059%202005.pdf



http://www.hdr.undp.org/en/content/human-development-report-1994
https://daccess-ods.un.org/access.nsf/Get?Open&DS=A/64/701&Lang=E
https://www.securitycouncilreport.org/atf/cf/%7B65BFCF9B-6D27-4E9C-8CD3-CF6E4FF96FF9%7D/CPR%20A%2059%202005.pdf
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of life

Humane
treatment,
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and life under
the rule of law
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S.A. Matlin, A. Krief, H. Hopf, G. Mehta. Angew
Chem Internat Edn 2021, 60(49), 25610-25623,
https://doi.org/10.1002/anie.202108067



https://doi.org/10.1002/anie.202108067

The chemical sciences
 have been good for human progress (wealth and health) — for some
« will be essential to meeting oncoming global challenges

Chemists
« can be guided by frameworks/goals e.g.
o UN Sustainable Development Goals
o Planetary Boundaries
o Human Security
o Sustainability (an emergent property of the whole system)
 need systems thinking as an essential competence
« must engage with society and policy-makers



Thank You

C4S ‘core’ group: Alain Krief
Henning Hopf
Goverdhan Mehta

Others: Peter Mahaffy + members of IUPAC Projects
Vivian Yam
Klaus Kimmerer + Lisa KeRler

Funders: Royal Society of Chemistry
German Chemical Society

Hosts University of Namur
University of Hyderabad
lICT, Hyderabad
DRILS, Hyderabad

s.matlin@imperial.ac.uk



